If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1^4-18x^2+77=0
We add all the numbers together, and all the variables
-18x^2+78=0
a = -18; b = 0; c = +78;
Δ = b2-4ac
Δ = 02-4·(-18)·78
Δ = 5616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5616}=\sqrt{144*39}=\sqrt{144}*\sqrt{39}=12\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{39}}{2*-18}=\frac{0-12\sqrt{39}}{-36} =-\frac{12\sqrt{39}}{-36} =-\frac{\sqrt{39}}{-3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{39}}{2*-18}=\frac{0+12\sqrt{39}}{-36} =\frac{12\sqrt{39}}{-36} =\frac{\sqrt{39}}{-3} $
| X^4-18x^2+77=0 | | 3(-x)-(-2+x)=2x+3 | | 9x+3=14x-24 | | (46+5x)=76 | | 14x-7=16x-9 | | 9x+11x-4=17x+11 | | 19x-4=17x+11 | | 15x+19=10x-2 | | 13x+8+x+13=18x+13 | | 56b2+b=1 | | x+13+8=10x+12 | | 5x+13x+20=19x+6 | | 17(n-984)=238 | | 5x+32=9x+4 | | 980=28(t+3) | | 4x+7x+16=13x-20 | | 9=d-673/28 | | 27(r+12)=837 | | 4x+7x-10=12 | | 9(v-863)=279 | | x+26=7x-16 | | 17(p-943)=935 | | 338=c/15+316 | | 19u-11=540 | | 10+6j=76 | | 40=18+3+3x-9 | | 19+3g=58 | | 19=3x-9 | | 12+39.25p=247.50 | | 7.75+27.25p=89.50 | | 100+2.5x=237.50 | | x=(x-3)(x+1) |